Neuronal membrane cholesterol loss enhances amyloid peptide generation

نویسندگان

  • Jose Abad-Rodriguez
  • Maria Dolores Ledesma
  • Katleen Craessaerts
  • Simona Perga
  • Miguel Medina
  • Andre Delacourte
  • Colin Dingwall
  • Bart De Strooper
  • Carlos G. Dotti
چکیده

Recent experimental and clinical retrospective studies support the view that reduction of brain cholesterol protects against Alzheimer's disease (AD). However, genetic and pharmacological evidence indicates that low brain cholesterol leads to neurodegeneration. This apparent contradiction prompted us to analyze the role of neuronal cholesterol in amyloid peptide generation in experimental systems that closely resemble physiological and pathological situations. We show that, in the hippocampus of control human and transgenic mice, only a small pool of endogenous APP and its beta-secretase, BACE 1, are found in the same membrane environment. Much higher levels of BACE 1-APP colocalization is found in hippocampal membranes from AD patients or in rodent hippocampal neurons with a moderate reduction of membrane cholesterol. Their increased colocalization is associated with elevated production of amyloid peptide. These results suggest that loss of neuronal membrane cholesterol contributes to excessive amyloidogenesis in AD and pave the way for the identification of the cause of cholesterol loss and for the development of specific therapeutic strategies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Links between ApoE, brain cholesterol metabolism, tau and amyloid beta-peptide in patients with cognitive impairment.

Brain neurons remove the excess of cholesterol via conversion into the more polar 24OHC [(24S)-hydroxycholesterol]. 24OHC acts as a signalling molecule inducing ApoE (apolipoprotein E)-mediated cholesterol efflux from astrocytes, by a direct effect on ApoE transcription, protein synthesis and secretion. In CSF (cerebrospinal fluid) collected form from patients with cognitive impairment (Alzheim...

متن کامل

Impact of 27-hydroxycholesterol on amyloid-beta peptide production and ATP-binding cassette transporter expression in primary human neurons.

Cholesterol is an integral component of neuronal membranes and recent evidence has shown that it regulates amyloid-beta protein precursor processing to form amyloid-beta peptides, which are a major constituent of cerebral amyloid plaques associated with Alzheimer's disease. 27-Hydroxycholesterol (27OHC) is synthesized from cholesterol via sterol 27-hydroxylase (CYP27A1) in the brain and, unlike...

متن کامل

The Position of Aβ22−40 and Aβ1−42 in Anionic Lipid Membranes Containing Cholesterol

Amyloid-β peptides interact with cell membranes in the human brain and are associated with neurodegenerative diseases, such as Alzheimer's disease. An emerging explanation of the molecular mechanism, which results in neurodegeneration, places the cause of neurotoxicity of the amyloid- peptides on their potentially negative interaction with neuronal membranes. It is known that amyloid-β peptides...

متن کامل

Increasing Membrane Cholesterol Level Increases the Amyloidogenic Peptide by Enhancing the Expression of Phospholipase C

Cerebral elevation of 42-residue amyloid β-peptide (Aβ42) triggers neuronal dysfunction in Alzheimer's disease (AD). Even though a number of cholesterol modulating agents have been shown to affect Aβ generation, the role of cholesterol in the pathogenesis of AD is not clear yet. Recently, we have shown that increased membrane cholesterol levels downregulates phosphatidylinositol 4,5-bisphosphat...

متن کامل

Unlocking the Door to Neuronal Woes in Alzheimer’s Disease: Aβ and Mitochondrial Permeability Transition Pore

Mitochondrial dysfunction occurs early in the progression of Alzheimer's disease. Amyloid-β peptide has deleterious effects on mitochondrial function and contributes to energy failure, respiratory chain impairment, neuronal apoptosis, and generation of reactive oxygen species in Alzheimer's disease. The mechanisms underlying amyloid-β induced mitochondrial stress remain unclear. Emerging eviden...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 167  شماره 

صفحات  -

تاریخ انتشار 2004